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Carlson's theorem [1, p. 153] states that an entire analytic function f of
exponential type less than 7T (that is, one satisfying an inequality of the form
Ij(z)1 :'S; AeB[zl with B < 7T) must vanish identically if it vanishes at the
integers. At first sight there seems to be no possibility of extending Carlson's
theorem to harmonic functions since an entire harmonic function ($0) can
have very slow growth and still vanish along a line (as u(x, Y) === Y does),
or even along two lines (as u(x, y) :== xy does). However, the possibility
remains that a harmonic function of small exponential type might vanish
identically if it vanishes at the lattice points, and this is in fact the case. We
shall prove even more; it is enough to have it vanish on two parallel lines
of lattice points.

THEOREM 1. Let k be a positive integer and let u(z) be a real-valued entire
harmonic function of exponential type less than 7Tlk. Let u(m) = 0 and
u(m + ik) = °for m = 0, ±l, ±2, .... Then u(z) === O.

The type 7Tlk is critical, since the imaginary part of e"z/I: vanishes on the
whole real axis and the whole line y = k.

For the proof of the theorem, let v be a harmonic function conjugate to u,
so thatj(z) = u(z) + iv(z) is entire. It follows from Caratheodory's inequality
[1, p. 2] thatfis of exponential type less than 7T/k. In fact, if A(r) = max i u(z)i
for I z I = r, Caratheodory's inequality stat@s that

; j(z)1 :'S; 1 j(O)[ + R~ r {A(R) - u(O)}, ! z! = r < R.

If we take R = r + 1, we see thatj(z) is of the same exponential type as u(z).
Now consider the entire functionf(z) + j(z), which reduces to 2u(x) when
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z = X, and so vanishes at the integers. By Carlson's theorem, it vanishes
identically, and so fez) = -fez); in particular,

fez + ik) = -fez - ik). (1)

Let g(z) = fez + ik). Then g(z) + g(z) also vanishes at the integers, so
g(z) = -g(z), and this says that

fez + ik) = -fez + ik).

Comparing this with (1), we get fez + ik) = fez - ik); in other words,
fez) has period 2ik.

Now it is well known (see [2]) that an entire functionf(z) of exponential
type and period 2ik must be an exponential sum of the form

N

fez) = L ajej'l[Z/k.
j=-N

In the present case, we must have N < 1 since the type is less than Trlk. That
is,f(z) is a constant; its real part u vanishes at the integers and so u(z) O.

Theorem I suggests a number of problems, for example the following:

1. Is there a corresponding theorem for harmonic functions in three
dimensions? That is, if a harmonic function u has sufficiently slow growth
and u(m, n, k) = 0 for all lattice points (m, n, k), is it true that u(x, y, z) = O?

2. Is there a corresponding theorem for harmonic functions that vanish
at equally spaced points on two intersecting lines? This is answered in
Theorem 2, below.

3. Since a harmonic function of exponential type less than 71' is
determined by its values on the lattice points m, m + i, it should be possible
to reconstruct the function from these values. How?

4. Carlson's theorem has many extensions. Most of those dealing with
functions that vanish at a sequence of points have obvious extensions to the
present situation. However, it is not obvious whether we can extend, for
example, Cartwright's theorem [1, p. 203] that an entire analytic function of
exponential type less than 71' is bounded on the real axis if it is bounded at the
integers.

THEOREM 2. If u is a real-valued entire harmonic function of exponential
type less than 71', and u(m) = u(mei..) = 0, for m = 0, ±1, ±2,... , then
u(z) = 0 unless ex is a rational multiple of71'.

When ex is a rational multiple plq of 71', the theorem fails, for example for
u(z) = r ll sin q().
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As in Theorem 1, construct fez) = u(z) + iv(z), and deduce again that
fez) = -fez). Since g(z) = f(zeia) satisfies the same conditions as fez), we
have

whencej(ze2i/X) = fez). This is clearly impossible for a uniformj(z) unless tX

is a rational multiple of 1T.

When u(z) is the real part of an entire analytic functionf(z) that can be
represented by the cardinal series

fez) = I: sin 1T(Z - n) fen)
,,=_00 1T(Z - n) J ,

there is an alternate line of proof for the conclusion of Theorem 1. Since
fern) = iam is pure imaginary, demanding that f(rn + i) is pure imaginary
leads to

n=-co

f (-l)nanCm - n) = 0
(m - n)2 + I '

That is, the convolution of {a,,} with

m = 0, ±l, ±2,....

is zero. Hence the product of the periodic functions F and G with these
Fourier coefficients is zero. But G(x) = (1Tjsinh 1T) sinh x on (-1T, 'IT), and
hence F(z) = 0 except at x = O. Therefore all an = 0 andf(z) = O.

Added in proof. The proofs in this paper can be shortened by making use of results
of Ratto, Newman and Shapiro [3].
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